Data Science

DATA SCIENCE WITH PYTHON

COURSE

An Overview

A data science course provides comprehensive training in the field of data science, which involves extracting actionable insights from large and complex datasets to drive business decisions and solve real-world problems. These courses cover a wide range of topics and techniques, including Basic Python, data analysis, statistics, machine learning, Deep Learning, Artificial Intelligence, and projects etc.

  • Selecting rows/observations
  • Rounding Number
  • Selecting columns/fields
  • Merging data
  • Data aggregation
  • Data munging techniques
  • What is Python?
  • Why Python?
  • Installing Python
  • Python IDEs
  • Jupyter Notebook Overview
  • Data types
  • Lists
  • Slicing
  • IF statements
  • Loops
  • Dictionaries
  • Tuples
  • Functions
  • Array
  • Selection by position & Labels
  • Pandas
  • Numpy
  • Sci-kit Learn
  • Mat-plot library
  • Reading CSV files
  • Saving in Python data
  • Loading Python data objects
  • Writing data to CSV file
  • Selecting rows/observations
  • Rounding Number
  • Selecting columns/fields
  • Merging data
  • Data aggregation
  • Data munging techniques
Central Tendency
  • Mean
  • Median
  • Mode
  • Skewness
  • Normal Distribution
Probability Basics
  • What does it mean by probability?
  • Types of Probability
  • ODDS Ratio?
Standard Deviation
  • Data deviation & distribution
  • Variance
Bias variance Tradeoff
  • Under fitting
  • Over fitting
Distance metrics
  • Euclidean Distance
  • Manhattan Distance
Missing Value treatment
  • What is NA?
  • Correlation
Classification
  • Confusion Matrix
  • Precision
  • Recall
  • Specificity
  • F1 Score
Regression
  • MSE
  • RMSE
  • MAPE
Linear Regression
  • Linear Equation
  • Slope
  • Intercept
  • R square value
Logistic regression
  • ODDS ratio
  • Probability of success
  • Probability of failure Bias Variance Tradeoff
  • ROC curve
  • Bias Variance Tradeoff
  • K-Means
  • K-Means ++
  • Hierarchical Clustering
  • Support Vectors
  • Hyperplanes
  • 2-D Case
  • Linear Hyperplane
  • K – Nearest Neighbour
  • Naïve Bayes Classifier
  • Decision Tree
  • Random Forest
Linear Regression
  • Perceptron
  • Multi-Layer perceptron
  • Markov Decision Process
Logistic regression
  • Logical Agent & First Order Logic
  • AL Applications
  • CNN – Convolutional Neural Network
  • RNN – Recurrent Neural Network
  • ANN – Artificial Neural Network
  • Text Pre-processing
  • Noise Removal
  • Lexicon Normalization
  • Lemmatization
  • Stemming
  • Object Standardization
Classification
  • Syntactical Parsing
  • Dependency Grammar
  • Part of Speech Tagging
  • Entity Parsing
  • Named Entity Recognition
Regression
  • Topic Modelling
  • N-Grams
  • TF – IDF
  • Frequency / Density Features
  • Word Embedding’s
  • Start Page
  • Show Me
  • Connecting to Excel Files
  • Connect to Microsoft SQL Server
  • Connecting to Microsoft Analysis Services
  • Creating and Removing Hierarchies
  • Bins
  • Joining Tables
  • Data Blending
  • Arameters
  • Grouping Example 1
  • Grouping Example 2
  • Edit Groups
  • Set
  • Combined Sets
  • Creating a First Report
  • Data Labels
  • Create Folders
  • Sorting Data
  • Add Totals, Subtotals and Grand Totals to Report
  • Area Chart
  • Bar Chart
  • Box Plot
  • Bubble Chart
  • Bump Chart
  • Bullet Graph
  • Circle Views
  • Dual Combination Chart
  • Dual Lines Chart
  • Funnel Chart
  • Traditional Funnel Charts
  • Gantt Chart
  • Grouped Bar or Side by Side Bars Chart
  • Heatmap
  • Highlight Table
  • Histogram
  • Histogram
  • Cumulative Histogram
  • Line Chart
  • Lollipop Chart
  • Pareto Chart
  • Pie Chart
  • Scatter Plot
  • Stacked Bar Chart
  • Text Label
  • Tree Map
  • Word Cloud
  • Waterfall Chart
  • Calculated Fields
  • Basic Approach to Calculate Rank
  • Advanced Approach to Calculate Ra
  • Calculating Running Total
  • Filters Introduction
  • Quick Filters
  • Filters on Dimensions
  • Conditional Filters
  • Top and Bottom Filters
  • Filters on Measures
  • Context Filters
  • Slicing Fliters
  • Data Source Filters
  • Extract Filters
  • Create a Dashboard
  • Format Dashboard Layout
  • Create a Device Preview of a Dashboard
  • Create Filters on Dashboard
  • Dashboard Objects
  • Create a Story
  • Tableau online
  • Overview of Tableau
  • Publishing Tableau objects and scheduling/subscription.
  • List the features of Oracle Database 11g
  • Discuss the basic design, theoretical, and physical aspects of a relational database
  • Categorize the different types of SQL statements
  • Describe the data set used by the course
  • Log on to the database using SQL Developer environment
  • Save queries to files and use script files in SQL Developer
  • Inserting Variables
  • Mysql connection
  • python database management
  • SQL using python SQlite

Projects

  • Gun Detection using Python-OpenCV
  • Brain Tumor detection
  • Disease Prediction Using Machine Learning
  • Predicting Stock Price Direction using Support Vector Machines
  • Face and Hand Landmarks Detection using Python – Mediapipe, OpenCV
  • Wine Quality Prediction – Machine Learningg
  • Human Activity Recognition
  • Twitter Sentiment Analysis